6.2 Trigonometric Functions: Unit Circle Approach/48: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex] | \cos{\left(\frac{5\pi}{6}\right)} &= \frac{-\sqrt{3}}{2} & \sec{\left(\frac{5\pi}{6}\right)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{2}\cdot | \tan{\left(\frac{5\pi}{6}\right)} &= \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{2}\cdot\frac{2}{\sqrt{3}} = -\sqrt{3} | ||
Revision as of 22:28, 25 August 2022