6.2 Trigonometric Functions: Unit Circle Approach/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | \cos{\left(\frac{8\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{8\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | ||
\tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = | \tan{\left(\frac{8\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{{1}}{2}} = \left(2\right) = | ||
& \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} </math> | & \cot{\left(\frac{8\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} </math> |
Revision as of 03:50, 26 August 2022