5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int\limits_{2}^{-1}\left(4y^3+2/y^3\right)dy</math><br>
<math>\int\limits_{2}^{-1}\left(4y^3+2/y^3\right)dy =
<math>y^4-y^-2\bigg|_{-2}^{-1}=(1-1)-(16-1/4)=-63/4
&= y^4-y^-2\bigg|_{-2}^{-1} =
&= (1-1)-(16-1/4) =
&= -63/4
</math>
</math>

Revision as of 16:05, 26 August 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_{2}^{-1}\left(4y^3+2/y^3\right)dy = &= y^4-y^-2\bigg|_{-2}^{-1} = &= (1-1)-(16-1/4) = &= -63/4 }