5.3 The Fundamental Theorem of Calculus/53: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | <math>g(x)=\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du</math> | ||
<math>\frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=(3*\frac{3x^2-1}{3x^2+1})-(2*\frac{2x^2-1}{2x^2+1})</math> | <math>\frac{d}{dx}g(x) = \frac{d}{dx}\left[\int_{2x}^{3x}\frac{u^2-1}{u^2+1}du\right]=(3*\frac{3x^2-1}{3x^2+1})-(2*\frac{2x^2-1}{2x^2+1})</math> | ||
Revision as of 22:19, 6 September 2022
=