6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 16: Line 16:


<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br>
<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br>
<math>
\begin{align}
\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex]
\cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]
\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex]
\end{align}
</math>

Revision as of 17:00, 26 August 2022





Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex] \cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] \tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} }