6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
<math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br> | <math> \theta \rightarrow x=5, \, y=-12, \, r=13 </math><br> | ||
<math> | |||
\begin{align} | |||
\sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex] | |||
\cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | |||
\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] | |||
\end{align} | |||
</math> |
Revision as of 17:00, 26 August 2022
Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex] \cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] \tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] \end{align} }