6.2 Trigonometric Functions: Unit Circle Approach/78: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
\cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= 3\\[2ex] | \cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= 3\\[2ex] | ||
\tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= 3 \\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:02, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{-12}{13} & \csc{(\theta)} &= \frac{2}{1}=2\\[2ex] \cos{(\theta)} &= \frac{-\sqrt{3}}{2} & \sec{(\theta)} &= 3\\[2ex] \tan{(\theta)} &= \frac{\frac{1}{2}} & \cot{(\theta)} &= 3 \\[2ex] \end{align} }