5.4 Indefinite Integrals and the Net Change Theorem/6: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]
&= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex]
&= 3\frac{x^{\frac{4}{3}}{4}


\end{align}
\end{align}
</math>
</math>

Revision as of 18:02, 26 August 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int\left(\sqrt{x^3}+\sqrt[3]{x^2}\right)dx &= \int\left(x^{\frac{1}{3}}+x^{\frac{2}{3}}\right)dx \\[2ex] &= \left(\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right) + \left(\frac{x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right) + C\\[2ex] &= 3\frac{x^{\frac{4}{3}}{4} \end{align} }