5.4 Indefinite Integrals and the Net Change Theorem/30: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
\int_{1}^{2}\frac{y+5y^7}{y^3}dy &= \int_{1}^{2}\left(\frac{y}{y^3}+\frac{5y^7}{y^3}\right)dy = \int_{1}^{2}(y^{-2}+5y^{4})dy\\[2ex]
\int_{1}^{2}\frac{y+5y^7}{y^3}dy &= \int_{1}^{2}\left(\frac{y}{y^3}+\frac{5y^7}{y^3}\right)dy = \int_{1}^{2}(y^{-2}+5y^{4})dy\\[2ex]


&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}{-1}+y^5\right)\bigg|_{1}^{2} \\[2ex]
&= \left(\frac{y^{-2+1}}{-2+1}+\frac{5y^{4+1}}{4+1}\right)\bigg|_{1}^{2} = \left(\frac{y^{-1}}{-1}+y^5\right)\bigg|_{1}^{2} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 18:11, 26 August 2022