5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
\end{cases} | \end{cases} | ||
<\math> | |||
<math> | |||
&= \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx \\[2ex] | &= \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx \\[2ex] | ||
<\math> | |||
<math> | |||
-\cos(x)\\[2ex] | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 18:54, 26 August 2022
Failed to parse (unknown function "\math"): {\displaystyle \begin{align} \int\limits_{0}^{\pi}f(x)dx \quad \text{where} \; f(x) = \begin{cases} sin(x) & 0 \le x < \frac{\pi}{2} \\ cos(x) & \frac{\pi}{2} \le x \le \pi \end{cases} <\math> <math> &= \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx \\[2ex] <\math> <math> -\cos(x)\\[2ex] \end{align} }