5.3 The Fundamental Theorem of Calculus/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
\int\limits_{0}^{\pi}f(x)dx | \int\limits_{0}^{\pi}f(x)dx | ||
Line 19: | Line 18: | ||
<math> -\cos(x)\\[2ex] | <math> -\cos(x)\\[2ex] | ||
</math> | </math> |
Revision as of 18:55, 26 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\limits_{0}^{\pi}f(x)dx \quad \text{where} \; f(x) = \begin{cases} sin(x) & 0 \le x < \frac{\pi}{2} \\ cos(x) & \frac{\pi}{2} \le x \le \pi \end{cases} <\math> <math> \int\limits_{0}^{\frac{\pi}{2}}f(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}f(x)dx = \int\limits_{0}^{\frac{\pi}{2}}\sin(x)dx + \int\limits_{\frac{\pi}{2}}^{\pi}\cos(x)dx \\[2ex] <\math> <math> -\cos(x)\\[2ex] }