5.5 The Substitution Rule/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{ | \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx = \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} = | ||
&= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] | &= \int (du)\sin{(u)} = \int \sin{(u)}du \\[2ex] |
Revision as of 19:23, 26 August 2022