5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int\limits_{-1}^{0}(2x-e^x)dx </math> <math> =\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 </math>") |
No edit summary |
||
Line 2: | Line 2: | ||
\int\limits_{-1}^{0}(2x-e^x)dx | \int\limits_{-1}^{0}(2x-e^x)dx | ||
</math> | </math> | ||
<math> | <math> | ||
=\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 | =\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx | ||
</math> | |||
<math> | |||
=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 | |||
</math> | </math> |
Revision as of 19:22, 26 August 2022