5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "<math> \int\limits_{-1}^{0}(2x-e^x)dx </math> <math> =\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 </math>")
 
No edit summary
Line 2: Line 2:
\int\limits_{-1}^{0}(2x-e^x)dx
\int\limits_{-1}^{0}(2x-e^x)dx
</math>
</math>
<math>
<math>
=\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2
=\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx
</math>
 
<math>
=-1-(-1-\frac{1}{e})=\frac{1}{e}-2
</math>
</math>

Revision as of 19:22, 26 August 2022