5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C
& \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C \\[2ex]
 
& \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +c]}
 
& \frac{d}{dx} {\cos{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0}
 


& \frac{d}{dx} {[\sin{x} - \frac{1}{3}\cdot 3\sin{x^2} \cos{x} +0]}


\end{align}
\end{align}
</math>
</math>

Revision as of 19:27, 26 August 2022