5.5 The Substitution Rule/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 19: | Line 19: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx = \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} = | \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} = | ||
&= \int (\frac{1}{2}du)\cos{(u)} = \frac{1}{2}\int \cos{(u)}du \\[2ex] | |||
&= \int (du)\ | &= \frac{1}{2}\sin{(u)} + C \\[2ex] | ||
&= | &= \frac{1}{2}\sin{(x^2)} + C \\[2ex] | ||
&= | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:25, 26 August 2022