5.5 The Substitution Rule/54: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
\begin{align}
\begin{align}


\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} =
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]


&= \int (\frac{1}{2}du)\cos{(u)} = \frac{1}{2}\int \cos{(u)}du \\[2ex]
&= \int_{0}^{\pi} (\frac{1}{2}du)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\sin{(u)} + C \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{(x^2)} + C \\[2ex]
&= \frac{1}{2}\sin{((\pi)} - \frac{1}{2}\sin{((0)} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 19:26, 26 August 2022