5.5 The Substitution Rule/54: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 21: Line 21:
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]  
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex]  


&= \int_{0}^{\pi} (\frac{1}{2}du)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex]
&= \frac{1}{2}\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \left[\frac{1}{2}\right]\sin{(u)}\bigg|_{0}^{\pi} \\[2ex]
&= \frac{1}{2}\sin{((\pi))} - \frac{1}{2}\sin{((0))} \\[2ex]
&= \frac{1}{2}\sin{((\pi))} - \frac{1}{2}\sin{((0))} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 19:27, 26 August 2022