5.5 The Substitution Rule/54: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 22: | Line 22: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex] | \int_{0}^{\sqrt{\pi}} x\cos{(x^2)}\,dx &= \int_{0}^{\sqrt{\pi}} (xdx)\cos{(x^2)} \\[2ex] | ||
&= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex] | &= \int_{0}^{\pi} \left(\frac{1}{2}du\right)\cos{(u)} = \frac{1}{2}\int_{0}^{\pi} \cos{(u)}du \\[2ex] | ||
&= \frac{1}{2}\left[\sin{(u)}\right]_{0}^{\pi} \\[2ex] | &= \frac{1}{2}\left[\sin{(u)}\right]_{0}^{\pi} \\[2ex] | ||
&= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | &= \frac{1}{2}\sin{(\pi)} - \frac{1}{2}\sin{(0)} \\[2ex] | ||
&= 0 | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 19:31, 26 August 2022
New upper limit:
New lower limit: