6.2 Trigonometric Functions: Unit Circle Approach/57: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> -\frac {\pi}{6}= -30^{\circ}<\math><br> -90^{\circ}\cdot\frac{\pi}{180^{\circ}}=\frac{\cancel{2}\cdot \cancel{5} \cdot \cancel{3}\cdot \cancel{3}}{1}\cdot\frac{\pi}{{2}\cdot \cancel{2} \cdot \cancel{5} \cdot \cancel{3} \cdot \cancel{3}}\cdot{-1} = -\frac{\pi}{2} </math>") |
No edit summary |
||
Line 1: | Line 1: | ||
<math> | <math> | ||
-\frac {\pi}{6}= -30^{\circ}< | -\frac {\pi}{6}= -30^{\circ}</math><br> | ||
<math> 360^{\circ} -30^{\circ} = 330^{\circ} = \frac{\sqrt{3}}{2} , -\frac{1}{2}</math><br> | |||
- | <math>cos(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{1} = \frac{\sqrt{3}}{2}</math><br> | ||
= -\frac{\ | <math>sin(-\frac {\pi}{6})= \frac{-\frac{1}{2}}{1} = -\frac{1}{2}</math><br> | ||
<math>tan(-\frac {\pi}{6})= \frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\cdot(2) = -\frac{1}{\sqrt{3}} \cdot ({\sqrt{3}}) = \frac{-\sqrt{3}}{3}</math><br> | |||
</math> | <math>sec(-\frac {\pi}{6})= \frac{1}{\frac{\sqrt{3}}{2}} \cdot (2) = \frac{2}{\sqrt{3}} \cdot (\sqrt{3}) = \frac {2\sqrt{3}}{3}</math><br> | ||
<math>csc(-\frac {\pi}{6})= \frac{1}{-\frac{1}{2}} \cdot (2) = \frac{2}{-1} = -2 </math><br> | |||
<math>cot(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot (2) = \frac{\frac{2}{\sqrt{3}}{-2} = -\sqrt{3}</math><br> |
Revision as of 16:27, 29 August 2022
Failed to parse (syntax error): {\displaystyle cot(-\frac {\pi}{6})= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot (2) = \frac{\frac{2}{\sqrt{3}}{-2} = -\sqrt{3}}