5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
(Created page with "17)\int{}{}1+tan^2x\,dx\\ \int{}{}1+tan^2x\,dx=\frac{d}{dx}(tanx)\\ \frac{d}{dx}(tanx)\\= \left(\frac{1}{dx}\right) &= \left(\frac{1}{dx}\right)") |
No edit summary |
||
Line 1: | Line 1: | ||
17)\int{}{}1+tan^2x\,dx\\ | 17)<math>\int{}{}1+tan^2x\,dx\\</math> | ||
\int{}{}1+tan^2x\,dx=\frac{d}{dx}( | <math>\int{}{}1+tan^2x\,dx=\frac{d}{dx}(tan(x))</math | ||
\frac{d}{dx}( | <math>\frac{d}{dx}(tan(x))\\= \left(\frac{1}{dx}\right) | ||
&= \left(\frac{1}{dx}\right) | &= \left(\frac{1}{dx}\right)</math> |
Revision as of 00:14, 29 August 2022
17)Failed to parse (syntax error): {\displaystyle \int{}{}1+tan^2x\,dx\\}
Failed to parse (syntax error): {\displaystyle \int{}{}1+tan^2x\,dx=\frac{d}{dx}(tan(x))</math <math>\frac{d}{dx}(tan(x))\\= \left(\frac{1}{dx}\right) &= \left(\frac{1}{dx}\right)}