5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with "17)\int{}{}1+tan^2x\,dx\\ \int{}{}1+tan^2x\,dx=\frac{d}{dx}(tanx)\\ \frac{d}{dx}(tanx)\\= \left(\frac{1}{dx}\right) &= \left(\frac{1}{dx}\right)")
 
No edit summary
Line 1: Line 1:
17)\int{}{}1+tan^2x\,dx\\
17)<math>\int{}{}1+tan^2x\,dx\\</math>
   \int{}{}1+tan^2x\,dx=\frac{d}{dx}(tanx)\\
   <math>\int{}{}1+tan^2x\,dx=\frac{d}{dx}(tan(x))</math
\frac{d}{dx}(tanx)\\= \left(\frac{1}{dx}\right)
<math>\frac{d}{dx}(tan(x))\\= \left(\frac{1}{dx}\right)
&= \left(\frac{1}{dx}\right)
&= \left(\frac{1}{dx}\right)</math>

Revision as of 00:14, 29 August 2022

17)Failed to parse (syntax error): {\displaystyle \int{}{}1+tan^2x\,dx\\}

  Failed to parse (syntax error): {\displaystyle \int{}{}1+tan^2x\,dx=\frac{d}{dx}(tan(x))</math <math>\frac{d}{dx}(tan(x))\\= \left(\frac{1}{dx}\right) &= \left(\frac{1}{dx}\right)}