5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
17)<math>\int{}{}1+tan^{2}x*dx = \frac{d}{dx}(tan(x))</math> | 17)<math>\int{}{}1+tan^{2}x*dx = \frac{d}{dx}(tan(x))</math> | ||
<math>\frac{d}{dx}(tan(x))=\frac{d}{dx}\left(\frac{sin(x)}{cos(x)}\right)=\frac{cos^{2}x-(-sin(x))}{cos^{2}(x)}</math> | <math>\frac{d}{dx}(tan(x))=\frac{d}{dx}\left(\frac{sin(x)}{cos(x)}\right)=\frac{cos^{2}x-(-(sin(x))(sin(x))}{cos^{2}(x)}</math> | ||
<math>=\frac{cos^{2}x+sin^2(x))}{cos^{2}(x)}=\frac{cos^{2}x}{cos^{2}(x)}+\frac{sin^{2}x}{cos^{2}(x)}</math> | |||
<math>=1+tan^2(x)</math> |
Revision as of 00:30, 29 August 2022
17)