5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
<math>\int1+\frac{sin^2x}{cos^2x}\,dx<math> | <math>\int1+\frac{sin^2x}{cos^2x}\,dx<math> | ||
<math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math> | <math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math> | ||
<math>\cos^2x+sin^2x=1<math> | <math>\cos^2x+sin^2x=1<math> | ||
<math>\int\frac{1}{cos^2x}\,dx<math> | <math>\int\frac{1}{cos^2x}\,dx<math> | ||
<math>\int\sec^2x\,dx<math> | <math>\int\sec^2x\,dx<math> | ||
<math>tanx+C\<math> | <math>tanx+C\<math> | ||
\end{align} | \end{align} |
Revision as of 03:48, 29 August 2022
17. \begin{align}
<math>\int_{}^{}1+tan^2 x\,dx <math> <math>\int1+\frac{sin^2x}{cos^2x}\,dx<math> <math>\int\frac{cos^2x+sin^2x}{cos^2x}\,dx<math> <math>\cos^2x+sin^2x=1<math> <math>\int\frac{1}{cos^2x}\,dx<math> <math>\int\sec^2x\,dx<math> <math>tanx+C\<math> \end{align}