5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:
= <math>\int_{1}^{64}\frac{x^{1/2}}{\frac{1}{2}}+ \frac{x^{5/6}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math>
= <math>\int_{1}^{64}\frac{x^{1/2}}{\frac{1}{2}}+ \frac{x^{5/6}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math>


=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{-2}^{2}</math>
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{64}^{1}</math>


= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math>
= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math>

Revision as of 10:24, 29 August 2022

+

= =

Add one to the exponents and divide by the new exponent

= =

=

=

=

=

=

=