5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math> | <math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math> | ||
<math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math> | = <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math> | ||
= <math>\int_{1}^{64}x^{-1/2}+x^{1/3-1/2}</math> = <math>\int_{1}^{64}x^{-1/2}+x^{-1/6}</math> | = <math>\int_{1}^{64}x^{-1/2}+x^{1/3-1/2}</math> = <math>\int_{1}^{64}x^{-1/2}+x^{-1/6}</math> |
Revision as of 10:25, 29 August 2022
= +
= =
Add one to the exponents and divide by the new exponent
= =
=
=
=
=
=
=