6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | ||
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{1}{2}}{\cancel{-}\frac{\sqrt{3}}{2}} = \left(\frac{1}{2}\right)\left(-\frac{2}{\sqrt{3}}\right) = -\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{3}}{3} | ||
& \cot{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] | & \cot{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{1}= -\sqrt{3} \\[2ex] |
Revision as of 16:04, 29 August 2022