6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{sqrt{3}}{2}}=2\\[2ex] | \sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=2\\[2ex] | ||
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] | \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex] |
Revision as of 16:18, 29 August 2022