6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex]
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex]


\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{1}{2}}\\[2ex]  


\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}

Revision as of 16:23, 29 August 2022