6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
\sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex] | \sin{\left(\frac{-14\pi}{3}\right)} &= -\frac{\sqrt{3}}{2} & \csc{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}= \frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{ | \cos{\left(\frac{-14\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{-14\pi}{3}\right)} &= \frac{1}{\frac{1}{2}}\\[2ex] | ||
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} | \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} |
Revision as of 16:23, 29 August 2022