6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3}


& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{2}\cdot\frac{2}{\sqrt{3}} \\[2ex]
& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Revision as of 16:40, 30 August 2022