6.2 Trigonometric Functions: Unit Circle Approach/63: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
\tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} | \tan{\left(\frac{-14\pi}{3}\right)} &= \frac{\cancel{-}\frac{\sqrt{3}}{2}}{\cancel{-}\frac{1}{2}} = \frac{\sqrt{3}}{\cancel{2}}\cdot \cancel{2} = \sqrt{3} | ||
& \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}}= \frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=frac{\sqrt{3}}{3} \\[2ex] | & \cot{\left(\frac{-14\pi}{3}\right)} &= \frac{\frac{\cancel{-}1}{2}}{\frac{\cancel{-}\sqrt{3}}{2}}=\frac{1}{\cancel{2}}\cdot\frac{\cancel{2}}{\sqrt{3}}= \frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 16:45, 30 August 2022