6.2 Trigonometric Functions: Unit Circle Approach/19: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 8: Line 8:
\cos{(t)} &= \frac{2\sqrt{2}}{3}        & \sec{(t)} &= \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{1}{1}\cdot\frac{3}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{3\sqrt{2}}{4}\\[2ex]  
\cos{(t)} &= \frac{2\sqrt{2}}{3}        & \sec{(t)} &= \frac{1}{\frac{2\sqrt{2}}{3}} = \frac{1}{1}\cdot\frac{3}{2\sqrt{2}} = \frac{3}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}}=\frac{3\sqrt{2}}{4}\\[2ex]  


\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4}      & \cot{(t)} &= \frac{1}{-\frac{1}{3}} = \frac{1}{1}\cdot-\frac{3}{1} = -3 \\[2ex]
\tan{(t)} &= \frac{-\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = -\frac{1}{3}\cdot\frac{3}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}\cdot\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{4}      & \cot{(t)} &= \frac{\frac{2\sqrt{2}}{3}}{-\frac{1}{3}} = \frac{2\sqrt{2}}{3}\cdot-\frac{3}{1} = -2\sqrt{2} \\[2ex]


\end{align}
\end{align}
</math>
</math>

Latest revision as of 17:02, 30 August 2022