6.2 Trigonometric Functions: Unit Circle Approach/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | \sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex] | ||
\cos{(t)} &= -\frac{\sqrt{2}}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= -\frac{\sqrt{2}}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= \frac{\frac{ | \tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} = -\frac{\sqrt{3}}{2}\cdot\frac{2}{1} = -\sqrt{3} & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:44, 30 August 2022