6.2 Trigonometric Functions: Unit Circle Approach/17: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
\begin{align}
\begin{align}


\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= -\frac{2}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{2\sqrt{3}}{3}\\[2ex]
\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= \frac{1}{\frac{\sqrt{2}}{2}} \cdot{2} = \frac{2}{\sqrt{2}} \cdot{\sqrt{2}} \\[2ex]
\cos{(t)} &= -\frac{\sqrt{2}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\cos{(t)} &= -\frac{\sqrt{2}}{2}        & \sec{(t)} &= \frac{2}{1} = 2\\[2ex]  
\tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]
\tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex]

Revision as of 18:05, 30 August 2022