6.2 Trigonometric Functions: Unit Circle Approach/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\begin{align} | \begin{align} | ||
\sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= | \sin{(t)} &= \frac{\sqrt{2}}{2} & \csc{(t)} &= \frac{1}{\frac{\sqrt{2}}{2}} \cdot{2} = \frac{2}{\sqrt{2}} \cdot{\sqrt{2}} \\[2ex] | ||
\cos{(t)} &= -\frac{\sqrt{2}}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | \cos{(t)} &= -\frac{\sqrt{2}}{2} & \sec{(t)} &= \frac{2}{1} = 2\\[2ex] | ||
\tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] | \tan{(t)} &= \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2}} \cdot{2} = -\frac{\sqrt{2}} \sqrt{2} = -1 & \cot{(t)} &= -\frac{1}{\sqrt{3}}=-\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3} \\[2ex] |
Revision as of 18:05, 30 August 2022