6.2 Trigonometric Functions: Unit Circle Approach/15: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
(Created page with ":<math> \begin{align} -\frac{2}{5},\frac\sqrt{21}{5} \sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex] \cos{(t)} &= \frac\{x}{r} & \sec{(t)} &= \frac{r}{x}\\[2ex] \tan{(t)} &= \frac{y}{x} & \cot{(t)} &= \frac{x}{y} \\[2ex] \end{align} </math> \end{align} </math>")
 
No edit summary
Line 5: Line 5:


\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex]
\sin{(t)} &= \frac\sqrt{21}{5} & \csc{(t)} &= \frac{r}{y}\\[2ex]
\cos{(t)} &= \frac\{x}{r} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
\cos{(t)} &= -\frac{2}{5} & \sec{(t)} &= \frac{r}{x}\\[2ex]  
\tan{(t)} &= \frac{y}{x} & \cot{(t)} &= \frac{x}{y} \\[2ex]
\tan{(t)} &= \frac\sqrt-{21}{2} & \cot{(t)} &= \frac{x}{y} \\[2ex]


\end{align}
\end{align}

Revision as of 18:53, 30 August 2022


\end{align} </math>