5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
Add one to the exponents and divide by the new exponent | Add one to the exponents and divide by the new exponent | ||
= <math>\int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math> | = <math>\int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\\[2ex]</math> | ||
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> | =<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> |
Revision as of 19:24, 30 August 2022
= +
= =
Add one to the exponents and divide by the new exponent
= = Failed to parse (syntax error): {\displaystyle \int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}\\[2ex]}
=
=
=
=
=
=