5.4 Indefinite Integrals and the Net Change Theorem/21: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{0}^{2}(6x^{2}-4x+5) dx</math> = <math>\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}</math>
<math>\begin{align}\int_{0}^{2}(6x^{2}-4x+5) dx = \frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}  
= <math>\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}</math> = <math>2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}</math>
=\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2} = 2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}  
= <math>[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]</math> = <math>16-18+0</math>
= [2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}] = 16-18+0
= <math>18</math>
= 18\end{align}</math>

Revision as of 19:24, 30 August 2022