5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}\\[3ex]</math>


= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>
= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>
Line 6: Line 6:
Add one to the exponents and divide by the new exponent
Add one to the exponents and divide by the new exponent


= <math>\int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6} \\[2ex]</math>
= <math>\int_{1}^{64}\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+ \frac{x^{\frac{5}{6}}}{\frac{5}{6}}</math> = <math>\int_{1}^{64}2x^\frac{1}{2} + \frac{6}{5}x^\frac{5}{6}</math>


=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>

Revision as of 19:25, 30 August 2022

= + Failed to parse (syntax error): {\displaystyle \int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}\\[3ex]}

= =

Add one to the exponents and divide by the new exponent

= =

=

=

=

=

=

=