5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Tag: Manual revert
Line 1: Line 1:
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
<math>\int_{1}^{64}\frac{1+\sqrt[3]{x}}\sqrt{x}dx</math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}\\[3ex]</math>
= <math>\int_{1}^{64}\frac{1}{x^{1/2}}</math> + <math>\int_{1}^{64}\frac{x^{1/3}}{x^{1/2}}</math>


= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>
= <math>\int_{1}^{64}x^{-1/2}+x^{\frac{1}{3}-{\frac{1}{2}}}</math> = <math>\int_{1}^{64}x^{-\frac{1}{2}}+x^{-\frac{1}{6}}</math>

Revision as of 19:26, 30 August 2022

= +

= =

Add one to the exponents and divide by the new exponent

= =

=

=

=

=

=

=