5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> | =<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math> | ||
= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math> | = <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math> = <math>16+38.4 - (2+1.2)</math> | ||
= <math>16+38.4 - (2+1.2)</math> | |||
= <math>54.4 - 3.2</math> | = <math>54.4 - 3.2</math> |
Revision as of 19:28, 30 August 2022
= +
= =
Add one to the exponents and divide by the new exponent
= =
=
= =
= =
=