5.4 Indefinite Integrals and the Net Change Theorem/39: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 9: Line 9:


=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>
=<math>2(x)^\frac{1}{2} + \frac{6}{5}(x)^\frac{5}{6}\bigg|_{1}^{64}</math>
= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math>


= <math>2(64)^\frac{1}{2} + \frac{6}{5}(64)^\frac{5}{6} - (2(1)^\frac{1}{2} + \frac{6}{5}(1)^\frac{5}{6})</math> = <math>16+38.4 - (2+1.2)</math>
= <math>16+38.4 - (2+1.2)</math>


= <math>54.4 - 3.2</math>
= <math>54.4 - 3.2</math>

Revision as of 19:28, 30 August 2022

= +

= =

Add one to the exponents and divide by the new exponent

= =

= =

=

= =

=