5.5 The Substitution Rule/51: Difference between revisions
Jump to navigation
Jump to search
Osbeenb61996 (talk | contribs) No edit summary Tag: Manual revert |
No edit summary |
||
Line 4: | Line 4: | ||
& \int_{0}^{2} ({x-1})^{25} dx \\[2ex] | & \int_{0}^{2} ({x-1})^{25} dx \\[2ex] | ||
\end{align} | |||
</math> | |||
& \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex] | <math> | ||
\begin{align} | |||
u &= x-1 \\[2ex] | |||
du &= dx \\[2ex] | |||
\end{align} | |||
</math> | |||
& \int {u^{25}} du &= \frac{1}{26}{u^{26}} \\[2ex] | |||
&= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex] | |||
& \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex] | & \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex] | ||
&= 0 | &= 0 | ||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 17:21, 7 September 2022
& \int {u^{25}} du &= \frac{1}{26}{u^{26}} \\[2ex]
&= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex]
& \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex]
&= 0
\end{align} </math>