5.5 The Substitution Rule/51: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
No edit summary
Line 4: Line 4:
& \int_{0}^{2} ({x-1})^{25} dx \\[2ex]
& \int_{0}^{2} ({x-1})^{25} dx \\[2ex]


& \int {t^{25}} dt \\[2ex]
\end{align}
</math>


& \cfrac{t^{25}} {26} \\[2ex]


& \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex]
<math>
\begin{align}
 
u &= x-1 \\[2ex]
du &= dx \\[2ex]
 
\end{align}
</math>
 
& \int {u^{25}} du &= \frac{1}{26}{u^{26}} \\[2ex]
 
&= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex]


& \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex]
& \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex]


&= 0
&= 0


\end{align}
\end{align}
</math>
</math>

Revision as of 17:21, 7 September 2022


& \int {u^{25}} du &= \frac{1}{26}{u^{26}} \\[2ex]

&= \cfrac{(x-1)^{26}} {26}\bigg|_{0}^{2} \\[2ex]

& \cfrac{(2-1)^{26}} {26} - \cfrac {(0-1)^{26}} {26} \\[2ex]

&= 0

\end{align} </math>