5.4 Indefinite Integrals and the Net Change Theorem/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<math>\begin{align}\int_{0}^{2}(6x^{2}-4x+5)dx | <math>\begin{align}\int_{0}^{2}(6x^{2}-4x+5)dx &=\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}\\[2ex]&=\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}=2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}&=[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]= 16-18+0 | ||
&=\frac{6x^{2+1}}{2+1}-\frac{4x^{1+1}}{1+1}+{5x}\bigg|_{0}^{2}&=\frac{6x^{3}}{3}-\frac{4x^{2}}{2}+{5x}\bigg|_{0}^{2}=2x^{3}-2x^{2}+{5x}\bigg|_{0}^{2}&=[2(2)^{3}-2(2)^{2}+{5(2)}]-[2(0)^{3}-2(0)^{2}+{5(0)}]= 16-18+0 | |||
&=18\end{align}</math> | &=18\end{align}</math> |
Revision as of 19:25, 1 September 2022