5.5 The Substitution Rule/43: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 1: Line 1:
<math>\begin{align}
<math>\begin{align}\int\frac{1+x}{1+x^2}dx &=\int(\frac{1}{1+x^2}+\frac{x}{1+x^2})dx\\[2ex]&=\int\frac{1}{1+x^2}dx+\int\frac{x}{1+x^2}dx\\[2ex]&=tan^{-1}(x) + \frac{1}{2}\int\frac{1}{u}du\\[2ex]&= tan^{-1}(x)+\ln|{1+x}|+c\end{align}</math>
\int\frac{1+x}{1+x^2}dx &=\int(\frac{1}{1+x^2}+\frac{x}{1+x^2})dx\\[2ex]&=\int\frac{1}{1+x^2}dx+\int\frac{x}{1+x^2}dx\\[2ex]&=tan^{-1}(x) + \frac{1}{2}\int\frac{1}{u}du\\[2ex]&= tan^{-1}(x)+\ln|{1+x}|+c
\end{align}</math>

Latest revision as of 19:20, 2 September 2022