5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 18: | Line 18: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) | ||
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | |||
&= \left(\ln (\abs(u)) \right) |bigg | |||
\end{align} | \end{align} | ||
</math> | </math> |
Revision as of 15:58, 6 September 2022
New upper limit:
New lower limit:
Failed to parse (unknown function "\abs"): {\displaystyle \begin{align} \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du &= \left(\ln (\abs(u)) \right) |bigg \end{align} }