5.3 The Fundamental Theorem of Calculus/10: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
\frac{d}{dr}(g(r)) = \frac{d}{dr}\left[\int_{0}^{r}\sqrt{x^2+4}\,dx\right] =   
(1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4}
(1)\cdot\sqrt{(r)^2+4} - (0)\cdot\sqrt{(0)^2+4} =\sqrt{r^2 + 4}
</math>
<math>
\text{Therefore, } g'(r) = =\sqrt{r^2 + 4}
</math>
</math>

Revision as of 20:04, 6 September 2022