5.5 The Substitution Rule/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 17: Line 17:


\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz  &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex]
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz  &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex]
&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 \\[2ex]
&= -\cos{(u)} + C \\[2ex]
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C


\end{align}
\end{align}
</math>
</math>

Revision as of 16:18, 7 September 2022

Failed to parse (unknown function "\begin{align}"): {\displaystyle \begin{align} \int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int\{u}^-\frac{1}{3}du \\[2ex] \end{align} }