5.5 The Substitution Rule/27: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz  &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex]
\int \cfrac{z^2}{\sqrt[3]{1+z^3}} dz  &= \frac{1}{3}\int\frac{1}{\sqrt[3]{u}}du = \frac{1}{3}\int{u}^{-\frac{1}{3}}du \\[2ex]


&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^2/3 \\[2ex]
&= -\frac{1}{3}(\frac{3}{2}{u}^\frac{2}{3}) = \frac{3}{6}{u}^{2/3} \\[2ex]
&= -\cos{(u)} + C \\[2ex]
&= -\cos{(u)} + C \\[2ex]
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C
&= \frac{1}{2}{1+z^3}^\frac{2}{3} + C

Revision as of 16:27, 7 September 2022