6.5 Average Value of a Function/2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | ||
&= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{u}\frac{1}{4}\,du = \frac{1}{ | &= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\frac{1}{4}\,du = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du | ||
&= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} | |||
&= -\frac{1}{8\pi}\cos(4\pi)+-\frac{1}{8\pi}\cos(-4\pi) | |||
\end{align} | \end{align} |
Revision as of 17:57, 7 September 2022
New upper limit:
New lower limit: