6.5 Average Value of a Function/2: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex]
f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex]


&= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\frac{1}{4}\,du = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du
&= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\frac{1}{4}\,du = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du \\[2ex]


&= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi}
&= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} \\[2ex]


&= -\frac{1}{8\pi}\cos(4\pi)+-\frac{1}{8\pi}\cos(-4\pi)
&= -\frac{1}{8\pi}\cos(4\pi)+-\frac{1}{8\pi}\cos(-4\pi)

Revision as of 17:58, 7 September 2022


New upper limit:
New lower limit: