6.5 Average Value of a Function/2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | f_{avg} &= \frac{1}{\pi-(-\pi)}\int_{-\pi}^{\pi}\sin{(4x)}\,dx = \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin{(4x)}\,dx \\[2ex] | ||
&= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\left(\frac{1}{4}\right) | &= \frac{1}{2\pi}\int_{-4\pi}^{4\pi}\sin{(u)}\left(\frac{1}{4}\,du\right) = \frac{1}{8\pi}\int_{-4\pi}^{4\pi}\sin(u)\,du \\[2ex] | ||
&= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} \\[2ex] | &= -\frac{1}{8\pi}\cos(u)\bigg|_{-4\pi}^{4\pi} \\[2ex] |
Revision as of 18:01, 7 September 2022
New upper limit:
New lower limit: