6.2 Volumes/25: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] | \pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex] | ||
\pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 = \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \\ | &= \pi\left[\frac{2y^3}{3}-\frac{y^5}{5}\right]\Bigg|_0^1 = \pi\left[\frac{2}{3}-\frac{1}{5}\right]= \\[2ex] | ||
\pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15} | \pi\left[\frac{10}{15}-\frac{3}{15}\right] = \frac{7\pi}{15} |
Revision as of 02:56, 12 September 2022