6.2 Volumes/25: Difference between revisions

From Burton Tech. Points Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


R + f(y) = 1
R + f(y) = 1 \\
r = 1
r = 1 \\


\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]
\pi\int_0^1\left[(1)^2-(1-y^2)^2\right]dy & = \pi\int_0^1\left[(1-(1-2y^2+y^4)\right]dy = \pi\int_0^1\left[(2y^2-y^4)\right]dy \\[2ex]

Revision as of 02:57, 12 September 2022